A stable nonconforming mixed finite element scheme for elliptic optimal control problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stable Mixed Finite Element Scheme for the Second Order Elliptic Problems

A stable mixed finite element method (MFEM) for the second order elliptic problems, in which the scheme just satisfies the discrete B.B condition, is discussed in this paper. The uniqueness and existence of solutions for the corresponding discrete problems are obtained, and the optimal O(h) order error estimates are derived.

متن کامل

Mixed Finite Element Methods for Elliptic Problems*

This paper treats the basic ideas of mixed finite element methods at an introductory level. Although the viewpoint presented is that of a mathematician, the paper is aimed at practitioners and the mathematical prerequisites are kept to a minimum. A classification of variational principles and of the corresponding weak formulations and Galerkin methods—displacement, equilibrium, and mixed—is giv...

متن کامل

A Splitting Least-squares Mixed Finite Element Method for Elliptic Optimal Control Problems

In this paper, we propose a splitting least-squares mixed finite element method for the approximation of elliptic optimal control problem with the control constrained by pointwise inequality. By selecting a properly least-squares minimization functional, we derive equivalent two independent, symmetric and positive definite weak formulation for the primal state variable and its flux. Then, using...

متن کامل

Erratum to: A Stabilized Mixed Finite Element Method for Elliptic Optimal Control Problems

Example 6.2 For the second example, we consider the stabilized parameters μ = δ = 0.5. Table 2 shows that a first-order convergence is obtained for the control, which is well matched with the theoretical analysis. Figures 4, 5, and 6 show the approximate profiles of the control, the state, and the flux state, respectively, when the lowest order RT element is adopted for the approximation of the...

متن کامل

Adaptive Finite Element Approximation for Distributed Elliptic Optimal Control Problems

In this paper, sharp a posteriori error estimators are derived for a class of distributed elliptic optimal control problems. These error estimators are shown to be useful in adaptive finite element approximation for the optimal control problems and are implemented in the adaptive approach. Our numerical results indicate that the sharp error estimators work satisfactorily in guiding the mesh adj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2015

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2015.04.005